

Functional and molecular evidence for β_1 -, β_2 - and β_3 adrenoceptors in human colon

S.J. Roberts, M. Papaioannou, B.A. Evans & 1R.J. Summers

Department of Pharmacology, University of Melbourne, Victoria 3052, Australia

- 1 Relaxation of carbachol pre-contracted human colonic muscle to (-)-isoprenaline was examined in circular, longitudinal and taenia coli preparations to determine the β -adrenoceptor subtypes involved. β_1 -, β_2 - and β_3 -Adrenoceptor mRNAs were also measured in colonic muscle and mucosa.
- 2 (-)-Isoprenaline caused relaxation of longitudinal smooth muscle preparations with pEC₅₀ = 7.39 \pm 0.12, and this response was inhibited by both propranolol (0.1 μ M, p K_B 8.55 \pm 0.12) and the selective β_1 -antagonist, CGP 20712A (0.1 μ M, p K_B 8.80 \pm 0.20), while the selective β_2 -antagonist, ICI 118551 (0.1 μ M) failed to inhibit isoprenaline relaxation consistently.
- 3 (-)-Isoprenaline caused relaxation of taenia coli with a pEC₅₀ of 6.70 ± 0.17 . Propranolol (0.1 μ M), CGP 20712A (0.1 µM) and ICI 118551 (0.1 µM) inhibited the isoprenaline response with similar low affinities (pK_B values 7.93, 7.71 and 7.54, respectively). Carbachol pre-contracted circular smooth muscle preparations failed to relax consistently to isoprenaline and these responses were not characterized.
- 4 β_1 and β_2 -Adrenoceptor mRNAs were present in circular/longitudinal muscle samples and taenia coli samples, and lower levels were detected in mucosa. β_3 -mRNA was also present in both muscle preparations but was not detected in human colonic mucosa.
- 5 In summary, β_1 -adrenoceptors are the predominant subtype mediating isoprenaline-induced relaxation of the thin longitudinal smooth muscle of human colon, while β_3 -receptors do not appear to be involved in these responses. However, β_3 -adrenoceptors may play a role in relaxation of the taenia coli as conventional antagonist affinities are low. β_3 -Adrenoceptor mRNA was present in taenia coli and circular/longitudinal smooth muscle but absent from human colonic mucosa.

Keywords: β_3 -Adrenoceptors; messenger RNA; human colon; smooth muscle; mucosa

Introduction

The sympathetic nervous system has an inhibitory effect on human gastrointestinal motility. Previous studies in human isolated gastrointestinal preparations have found that stimulation by β -adrenoceptor agonists induces relaxation of muscle in ileum (Bennett, 1965), jejunum (Whitney, 1965) and colonic circular (Fishlock & Parks, 1963) and longitudinal smooth muscle (Bucknell & Whitney, 1964). The relative activity of noradrenaline and adrenaline in various human gastrointestinal smooth muscle preparations has suggested that both β_1 - and β_2 -adrenoceptors are present in these tissues (Hedges & Turner, 1969). More recent studies have indicated that atypical β -adrenoceptors mediate relaxation in gastrointestinal tissues in a variety of species, including guinea-pig ileum and gastric fundus, rat gastric fundus, ileum, jejunum, colon and oesophagus (see Manara et al., 1995 for review). In addition to relaxation, atypical β -adrenoceptor agonists stimulate gastric acid secretion in stomach (Canfield & Paraskeva, 1992), bicarbonate secretion in colon (Canfield & Abdul-Ghaffar, 1992) and have protective effects against indomethacin-induced gastric damage in the rat (Bahl et al., 1996). The characteristics of the atypical β -adrenoceptor in these tissues resemble those of the cloned β_3 -receptor.

The β_3 -adrenoceptor was first isolated and cloned from a human genomic library (Emorine et al., 1989) and is 51% and 46% homologous to the human β_1 - and β_2 -adrenoceptors, respectively. The human β_3 -adrenoceptor gene, like that of the rodent, contains several exons which may represent potential splice sites during β_3 -adrenoceptor expression (Granneman et al., 1993). There are also sequence differences in the promoter regions of human and rodent β_3 -adrenoceptor genes suggesting the possibility of species differences in the regulation of β_3 gene expression (Granneman & Lahners, 1994). The human β_3 -

adrenoceptor has been extensively characterized in expression systems and differs from the rodent β_3 -receptor with regard to the potency of selective β_3 -agonists. For instance BRL 37344 is less effective in stimulating adenylate cyclase via the human than via the rodent β_3 -adrenoceptor (Liggett, 1992). Also, the β_1 - and β_2 -antagonist, CGP 12177 is an effective agonist at the human β_3 -adrenoceptor whereas it displays poor partial agonist activity at the rat β_3 -adrenoceptor (Liggett, 1992; Granneman et al., 1993). Recent studies have detected β_3 adrenoceptor mRNA in several human tissues including infant perirenal brown adipose tissue (BAT), adult adipose tissue deposits, gall bladder, colon, ileum, stomach and prostate (Granneman et al., 1993; Krief et al., 1993; Berkowitz et al., 1995). β_3 -Adrenoceptor mRNA occurs in human colon and gall bladder independently of the BAT marker uncoupling protein (UCP) (Krief et al., 1993).

Although a few studies have investigated the role of β_3 adrenoceptors in human adipose tissue little has been done to characterize the β -subtypes mediating responses in human gastrointestinal tissues. Spontaneous activity in human colonic circular smooth muscle is inhibited by isoprenaline and noradrenaline and these effects are blocked by propranolol with an affinity lower than expected for human β_1 - or β_2 -adrenoceptors (McLaughlin et al., 1988). However, these preparations do not respond to BRL 37344 and responses to isoprenaline are blocked by the β_1 -selective antagonist, betaxolol (McLaughlin et al., 1991). A more recent study with human colonic circular muscle showed that isoprenaline relaxation in the presence of β_1 - and β_2 -antagonists was further inhibited by the β_3 -adrenoceptor antagonist, SR 59230A (De Ponti et al., 1996).

The aim of the present study was to examine the effects of β adrenoceptor stimulation in functional studies with three different muscle preparations of the human colon (circular smooth muscle, longitudinal smooth muscle and taenia coli) to determine the β -subtypes involved in mediating relaxation of these tissues. In addition these areas of human colon have been

¹ Author for correspondence.

examined by use of reverse transcription-polymerase chain reaction (PCR) for the presence of mRNA coding for each of the three β -adrenoceptor subtypes. A preliminary account of this work has been presented (Summers *et al.*, 1996).

Methods

Organ bath studies of human colonic smooth muscle preparations

Tissue preparation Specimens of human colon were obtained from patients undergoing surgery for cancer of the colon or rectum at the Royal Melbourne or St Vincent's Hospitals, Melbourne, Victoria, Australia. Specimens were collected from the Anatomical Pathology Department having arrived directly from the operating theatres and generally consisted of a section of the whole wall of the colon from a normal region. They were placed immediately into preoxygenated Krebs Henseleit Buffer and transported on ice back to the laboratory. Mucosa and submucosa were gently removed and muscular regions between the taenia coli were cut into strips of approximately 1 mm width along either the circular or longitudinal axis (the circular muscle being the thicker of the muscularis externa at the point of dissection). The taenia coli are three distinct bands of longitudinal muscle that run the entire length of the human colon and terminate at the rectum. When taenia coli were present in the colon specimens they were cut into thin longitudinal strips and the surrounding tissue cut away to provide better perfusion for the thick muscle.

Human colonic muscle strips were mounted on tissue hooks and suspended in jacketed organ baths containing 25 ml Krebs Henseleit solution (composition mm: NaCl 118.4, KCl 4.7, MgSO₄.7H₂O 1.2, KH₂PO₄ 1.2, NaHCO₃ 25, glucose 11 and CaCl₂ 2.5) maintained at 37°C and bubbled continuously with 95% O₂/5% CO₂ (pH 7.4) under 0.5 g tension. Ugo Basile isotonic transducers connected to a MacLab system with an Apple Macintosh Computer were used to measure isotonic changes in the length of the tissues. Tissue strips were allowed to equilibrate for 30–45 min in the presence of desipramine (0.5 μM) to block neuronal uptake and hydrocortisone (30 μM) to block extra-neuronal uptake. Phentolamine (10 μM) was also present to remove any possible contribution from α-adrenoceptors. When antagonists were used they were also present during this equilibration period.

Concentration-response curves of human colonic smooth muscle relaxation Concentration-response (C-R) curves were constructed with (-)-isoprenaline in paired tissue strips, from the same patient, in the absence and presence of various concentrations of the β_1/β_2 -antagonist, propranolol, the selective β_1 -antagonist, CGP 20712A, or the selective β_2 -antagonist, ICI 118551. Tissues were equilibrated for 45 min in the presence of the antagonists and then precontracted with carbachol $(0.3 \mu M)$. After 15–20 min, (–)-isoprenaline C-R curves were commenced with only one C-R curve being constructed in each tissue strip. Isoprenaline concentrations (0.1 nM – 100 μ M) were increased cumulatively in 0.5 log increments. The contact time of each concentration ranged from 3-5 min and was the time required for the response to plateau. Tissue responses were standardized against a final maximum relaxation to papaverine (50 μ M). The maximum achievable relaxation obtained with (-)-isoprenaline ranged from 60-75% in relation to papaverine (50 μ M).

Analysis of organ bath studies

Relaxation was measured as the reduction of the precontracted baseline tone of the muscle and the activity of the agonists was expressed as a pEC $_{50}$ value (log concentration of the agonist required to produce 50% of the maximal relaxation effect) obtained by analysis with a non-linear curve fitting programme in PRISM (Intuitive Software for Science). Antagonist activity

was measured by comparing the shift of the C-R curve in the presence of the antagonist and a dose-ratio (DR) was calculated for each individual antagonist concentration. As single concentrations of antagonist were used 'apparent pA_2 ' (or pK_B) values were obtained from a single concentration of antagonist by the equation,

 pK_B log antagonist ratio 1 log antagonist used according to the method of Furchgott (1972).

C-R curves were plotted as means \pm s.e.mean of n individual experiments. All values are expressed as means \pm s.e.mean. All n values refer to the number of individual patients from whom colon specimens were obtained.

RNA extractions

Frozen tissue was ground to a fine powder in a stainless steel mortar and pestle pre-cooled in liquid nitrogen. Total RNA was extracted by the method of Chomczynski & Sacchi (1987). To avoid any cross-contamination, the homogenizer probe was dismantled and washed thoroughly between each sample. The yield and quality of the RNA were assessed by measuring absorbance at 260 and 280 nm, and by electrophoresis on 1.2% agarose gels. Total RNA from each tissue was treated with DNase to remove any possible contaminating genomic DNA. The reaction mix contained 20 µg RNA, 100 mm sodium acetate (pH 7.0), 5 mM MgSO₄, 5 mM dithiothreitol, 36 u RNasin (Promega), and 10 u DNase I (Pharmacia) in a total volume of 40 μ l. Following digestion at 37°C for 30 min, the solution was diluted to 400 μ l with H_2O and extracted with an equal volume of phenol:chloroform (1:1). The RNA was precipitated with 1.0 ml of ethanol and 40 μ l of 2 M sodium acetate. The yield and quality of DNase-treated RNA were determined as above.

Reverse transcription/PCR

cDNAs were synthesized by reverse transcription of 1.0 μ g of each total RNA with oligo (dT)₁₅ as a primer. The RNA in a volume of 7.5 μ l was heated to 70°C for 5 min then placed on ice for 2 min before the addition of a reaction mix containing 1× RT buffer supplied by Promega), 1 mM dNTPs, 5 mM MgCl₂, 18 u RNasin (Promega), 20 u AMV reverse transcriptase (Promega), and 50 μ g ml⁻¹ oligo(dT)₁₅ in a volume of 12.5 μ l. Following brief centrifugation, the reactions were incubated at 42°C for 45 min, then at 95°C for 5 min. The completed reverse transcription reactions were stored at -20°C and used for PCR without further treatment.

PCR amplification was carried out on cDNA equivalent to 100 ng of starting RNA, with oligonucleotide primers specific for human β_1 , β_2 and β_3 -adrenoceptors, adipsin and transferrin receptor (Table 1; synthesized at the Howard Florey Institute, Melbourne or by Life Technologies, Gaithersburg, MD, U.S.A.). PCR mixes contained 1 u of Taq polymerase (Promega), the buffer supplied (10 mM Tris-HCl (pH 9), 50 mM KCl and 0.1% Triton X-100), 200 µM dNTPs, 2 mM Mgacetate (3 mM for β_2 -receptor), 2.5 pmol of forward primer, 2.5 pmol of reverse primer and cDNA in a volume of 20 μ l. For each set of primers, a single reaction mix containing all components except the cDNA was prepared for the entire PCR experiment and placed in aliquots to minimize variation between samples. Each PCR experiment included a negative control consisting of an RT reaction containing no added RNA. PCR was carried out in an FTS-1 capillary thermal sequencer (Corbett Research, Lidcombe, New South Wales, Australia). Following initial heating of samples at 95°C for 2 min, each cycle of amplification consisted of 30 s at 95°C, 30 s at 64°C, and 30 s at 72°C. For each set of primers, the log (PCR product) versus cycle number (20 to 36) was plotted, and a cycle number chosen within the linear portion of the graph (data not shown). Individual cycle numbers were 32 for β_1 -, 30 for β_2 - and 30 for β_3 -adrenoceptors, 24 for adipsin and 30 for transferrin receptor. Following amplification, PCR products

were electrophoresed on 1.3% agarose gels and transferred onto Hybron N^+ membranes by Southern blotting in 0.4 M NaOH/1 M NaCl. The membranes were rinsed for 5 min in 0.5 M Tris-HCl (pH 7.5)/1 M NaCl, then in 2× SSC 0.3 M NaCl/30 mM sodium citrate).

Detection and measurement of PCR products

The identity of the PCR products was verified by hybridization to independent probes (Table 1). Oligonucleotide probes (10 pmol) were end-labelled in a 10 μ l reaction mix containing 15 μ Ci [γ -³³P]-adenosine 5'-triphosphate (ATP) (2000 Ci m- mol^{-1} ; Bresatec), 1 × One-Phor-All Plus buffer (Pharmacia), and 10 u T4 polynucleotide kinase (Pharmacia). Following incubation at 37°C for 30 min, reactions were heated at 90°C for 2 min and diluted to 100 μ l with H₂O. The labelled probes were separated from unincorporated nucleotide by centrifugation through Chroma-spin 10 columns (Clontech), according to the manufacturers instructions. PCR products were fixed to nylon membranes by exposure to u.v. light for 2 min, and were then pre-hybridized for 2 h at 42°C in a buffer containing $5 \times SSC$, 0.5% SDS, $100 \mu g ml^{-1}$ herring sperm DNA, $5 \times$ Denhardts solution (1 mg ml⁻¹ bovine serum albumin, 1 mg ml⁻¹ Ficoll 400 and 1 mg ml⁻¹ polyvinylpyrrolidone), and 0.1 mm ATP. Following addition of labelled oligonucleotide probe (equivalent to 5 pmol), hybridization was carried out at 42° C for 16 h. The filters were washed in $2 \times SSC$ / 0.1% SDS, twice at room temperature for 5 min, then twice at 42°C for 5 min. Radioactivity was detected with a Molecular Dynamics phosphorimager (SI) after exposure to imaging plates for 5-34 h.

To determine the relative levels of β -receptor subtypes and transferrin receptor in regions of human colon, the reverse primer was end-labelled before PCR. The reaction mix contained 250 pmol of oligonucleotide, 250 μ Ci [γ -³³P]-ATP, 1 × One-Phor-All Plus buffer (Pharmacia), and 70 u T4 polynucleotide kinase (Pharmacia) in a volume of 100 μ l. Incubation and purification of the oligonucleotide were as described above. PCR reactions were carried out with 2.5 pmol of the labelled reverse primer. Following transfer of the PCR products as above, Hybond N+ membranes were dried at room temperature for 30 min, then apposed directly to phosphorimager plates. Exposure times for all quantitative experiments were 8 h.

Drugs

The drugs and reagents used were as follows: (-)-propranolol, (±)-ICI 118551 (erythro-DL-1(7-methylindian-4-yloxy)-3-iso-

propylaminobutan-2-ol) (Imperial Chemical Industries. Wilmslow, Cheshire, U.K.); (–)-isoprenaline hydrochloride, hydrocortisone, desipramine HCl, carbachol (carbamylcholine chloride), papaverine, (Sigma Chemical Company, St Louis, MO, U.S.A.); (\pm) -CGP 20712A (2-hydroxy-5(2-((2-hydroxy-3-(4-((1-methyl-4-trifluoromethyl)1H-imidazole-2-yl) phenoxy)propyl) amino)ethoxy) - benzamide monomethane sulphonate), phentolamine HCl (Regitine) (Ciba-Geigy AG Australia); BRL 37344 (Sodium-4-[-2[-2-hydroxy-2-(-3-chlorophenyl) ethylamino] propyl] phenoxyacetate) (Smith Kline Beecham, Great Burgh, Epsom, U.K.); (±)-CGP 12177 hydrochloride ((-)-4-)3-t-butylamino-2-hydroxypropoxy)benzimidazol-2-one) (Research Biochemicals Inc., Massachusetts, U.S.A.); L(+)-ascorbic acid (Merck, Frankfurt, Germany); EDTA (ethylenediaminetetra-acetic acid di-sodium salt) (AJAX Chemicals, Melbourne, Australia).

Stock solutions of CGP 20712A (10 mm), ICI 118,551 (10 mm), desipramine (5 mm), isoprenaline (10 mm) were prepared in 10 mm HCl. Hydrocortisone (25 mm) was prepared in absolute ethanol. All remaining drugs were prepared in distilled water. Dilutions were made with the appropriate buffer. All other chemicals were of analytical grade.

Results

Organ bath studies of human colonic smooth muscle

Organ bath studies were performed on strips of circular and longitudinal smooth muscle and taenia coli. During the 30-45 min equilibration period in carbogenated buffer at 37°C under 0.5 g tension, most human colonic muscle strips developed varying degrees of spontaneous activity. The pattern of spontaneous activity was very variable between tissues and often variable between different strips from the same colon sample. Some strips displayed a slow phasic contraction with shorter more frequent contractions superimposed on this activity. The slower phasic activity disappeared when the muscle was precontracted and generally the rapid spontaneous activity was stably maintained throughout most of a cumulative isoprenaline C-R curve, then was reduced markedly as the tissue reached approximately 50% of its maximum relaxation. Several extraneuronal uptake inhibitors were tested; the addition of either corticosterone (100 μ M), hydrocortisone (30 μ M) or phenoxybenzamine (5 μ M) caused a decrease in the baseline tone of the circular smooth muscle and corticosterone also appeared to inhibit the spontaneous contractions of the muscle, although this was not quantitated. Hydrocortisone (30 μ M) has been used successfully in other studies of atypical β -adre-

Table 1 Oligonucleotides used as PCR primers and hybridization probes

Name	Length	Strand	Sequence $(5' \rightarrow 3')$	T_m (°C) ^a	Location ^b
Primers					
hb1.157	22	for	CTGTCTCAGCAGTGGACAGCGG	68	J03019: 243-264
hb1.510	22	rev	CAGCAGGCTCTGGTAGCGGAAG	68	J03019: 575-596
hb2.2116	25	for	ACCCACCAGGAAGCCATCAACTGCT	72	M15169: 2116-2140
hb2.2532	31	rev	GCCTATCCAATTTAGGAGGATGTAAACTTCC	67	M15169: 2502-2532
hb3.1112	25	for	TGCCCTGAACTGGCTAGGTTATGCC	70	X70811: 1112-1136
hb3.1479	25	rev	CCCAGTCGTCAGGTTCTGGAGGGTA	70	X70811: 1455-1479
had.92	22	for	CCTACATGGCGTCGGTGCAGCT	71	M84526: 92-113
had.603	23	rev	GGAGTCACCCTTGCAGCTGTCCC	71	M84526: 581-603
htr.1738	24	for	GCAACTTCAAGGTTTCTGCCAGCC	69	X01060: 1738-1761
htr.2208	25	rev	AGTCTCCACGAGCAGAATACAGCCA	68	X01060: 2184-2208
Probes					
hb1.pro	22	+	CATGGGTCTGCTGATGGCGCTC	72	J03019: 266-278
hb2.pro	21	+	AGCCAGGTGGAGCAGGATGGG	71	M15169: 2323-2343
hb3.pro	30	_	TCTGATCAACAGAGTTGTTGCTTCTTGTCC	69	X70811: 1360-1389
had.pro	22	_	GGTCCAGCACTGGCAAGAGCAC	69	M84526: 484-505

^aT_m determined by 'PRIMER' (Version 0.5, Whitehead Institute).

^b Genbank accession number and nucleotide numbers within corresponding entry.

noceptors and was used to maintain consistency with previous studies performed in rat gastrointestinal tissue.

Since all three muscle preparations failed to develop sufficient spontaneous tone to construct full concentration-relaxation curves, tissues were precontracted with carbachol. C-R curves to carbachol were performed and a concentration of $0.3~\mu\mathrm{M}$ caused a contraction of the circular and longitudinal smooth muscle of 60-70% of maximum (data not shown).

Effect of (-)-isoprenaline in circular smooth muscle preparations Initially, C-R curves to (-)-isoprenaline were performed on circular smooth muscle preparations with the spontaneously developed tone of the tissue as a baseline. Table 2 shows the pEC₅₀ values of (-)-isoprenaline in two circular smooth muscle preparations in which full C-R curves were obtained and the corresponding pK_B values for propranolol of approximately 8. However, the spontaneous tone of the muscle was not consistently maintained in all muscle strips and, unlike previous studies of human circular smooth muscle (McLaughlin et al., 1988; 1991; De Ponti et al., 1996) which have relied on a stable basal tone, we found this to be insufficient to allow the successful completion of a full (-)-isoprenaline C-R curve. Attempts to perform (-)-isoprenaline C-R curves in circular smooth muscle preparations after precontraction with carbachol were unsuccessful as the contracted muscle developed an increased amplitude of spontaneous contractions and no subsequent relaxation with increasing amounts of (-)-isoprenaline. This phenomenon was particularly evident in experiments performed in the presence of the neuronal and extraneuronal uptake blockers. Due to the limited availability of human colonic tissue no further β -adrenoceptor subtype characterization was attempted in circular smooth muscle preparations.

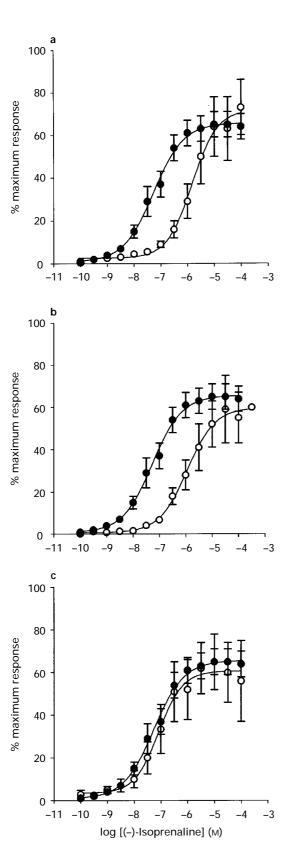
Effect of (-)-isoprenaline on carbachol-precontracted longitudinal smooth muscle. Tissue strips of longitudinal smooth muscle lying between the taenia coli provided a preparation with high reproducibility which showed spontaneous contractions and maintained a stable baseline after carbachol $(0.3 \, \mu \text{M})$ precontraction. Clear concentration-dependent relaxation of the muscle was observed to cumulative additions of (-)-isoprenaline with pEC₅₀ values of (-)-isoprenaline for each individual muscle preparation.

(-)-Propranolol (0.1 μ M) was an effective inhibitor of (-)-isoprenaline relaxation and caused rightward shifts in the C-R

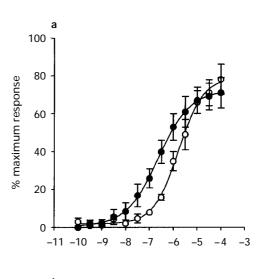
curves with a p K_B value of 8.55 ± 0.12 (n=8; Table 2). CGP 20712A (10–300 nM) also caused rightward shifts in the (—)-isoprenaline C-R curves with p K_B values in the range of 8.3 to 9.5 (Table 2). The mean p K_B value for 0.1 μ M CGP 20712A was 8.80 ± 0.20 (n=5). In contrast, the selective β_2 -adrenoceptor antagonist ICI 118551 (0.1 μ M) had low affinity in inhibiting (—)-isoprenaline-induced relaxation and caused only small shifts in 4 (p K_B 7.98 \pm 0.13) of 7 tissues and no significant shift in the remaining preparations (Table 2). The mean data for antagonist effects on (—)-isoprenaline C-R curves in longitudinal smooth muscle is shown in Figure 1.

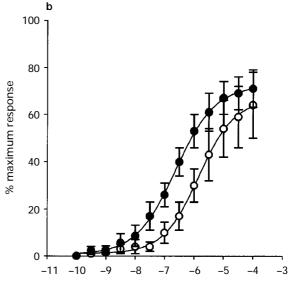
Effect of (-)-isoprenaline on carbachol-precontracted human taenia coli Taenia coli were present in five of the colon specimens received and muscle strips from these preparations showed lower levels of spontaneous activity than the longitudinal smooth muscle preparations described above. (-)-Isoprenaline relaxed carbachol-precontracted preparations with a reduced potency in taenia coli compared to longitudinal smooth muscle (pEC₅₀ 6.70 ± 0.17, n = 5; Table 2).

(-)-Propranolol (0.1 μ M) caused rightward shifts of the (-)-isoprenaline C-R curves but with rather lower affinity than in longitudinal smooth muscle preparations (Table 2). The p $K_{\rm B}$ values for propranolol (7.93 \pm 0.25; n=4) were low for typical β -adrenoceptor values (P < 0.05 for comparison between longitudinal muscle and taenia coli) but significantly higher than the affinity of propranolol expected at atypical β adrenoceptors. The selective antagonists, CGP 20712A $(0.1 \mu M)$ and ICI 118551 $(0.1 \mu M)$, both caused similar shifts of the (-)-isoprenaline C-R curves with p $K_{\rm B}$ values of 7.71 ± 0.08 (n=3) and 7.54 ± 0.48 (n=4) respectively, lower affinities (P < 0.005 for comparison between longitudinal muscle and taenia coli for CGP 20712A) than expected for their respective subtypes, indicating the possible involvement of another receptor. (-)-Isoprenaline C-R curves in taenia coli are shown in Figure 2. BRL 37344 was tested in one tissue and found to cause concentration-dependent relaxation of the taenia coli but with low potency (pD $_2$ 5.49).


Detection of β_1 -, β_2 - and β_3 -adrenoceptor mRNA in human colon samples

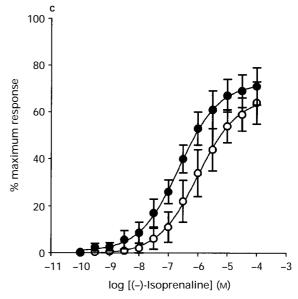
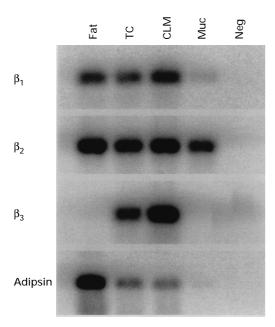
We used RT-PCR to detect β -adrenoceptor and adipsin mRNA in taenia coli, circular/longitudinal smooth muscle and mucosa obtained from samples of human colon, and in a sample of white adipose tissue (WAT) from the epicardium of


Table 2 Summary of results from individual organ bath experiments


Disease	Tissue region	Patient sex (age)	Isoprenaline (pEC_{50})	$\begin{array}{c} Propranolol \\ (p{\rm K}_B) \end{array}$	$CGP\ 20712A$ (pK_B)	ICI 118551 (pK _B)	
Circular muscle							
Rectal polyps	Proximal	m (64)	6.74	8.00, 8.07	_	_	
Ca rectum	Distal	N/A	7.39	8.04	_	_	
Longitudinal muscle							
Ca rectum	Distal	f (69)	7.23	8.08, 8.02	_	_	
Ca rectum	Distal	f (40)	7.51	_	8.41 ^b , 9.26	8.28, no shift	
Rectosigmoid Ca	Distal	f (62)	7.37	8.70	8.54	no shift	
Ca right colon	Proximal	m (66)	7.70	_	8.48 ^b , 8.66, 7.30 ^c	7.65	
Ca rectum	Distal	f (46)	7.31	8.76	8.26	8.02	
Rectosigmoid Ca	Distal	m (74)	6.66	8.39, 8.31	_	no shift	
Ca colon	Proximal	f (79)	7.57	8.78	9.04 ^b , 9.26, 9.54 ^a	7.95	
Ca rectum	Distal	m (70)	7.75	8.63		_	
Taenia coli							
Ca colon	Distal	m (56)	6.42	7.78	7.73	7.10	
Ca rectum	Distal	m (70)	7.34	8.66	_	_	
Ca sigmoid colon	Sigmoid	f (74)	6.72	_	7.84	8.49	
Ca rectum	Sigmoid	f (35)	6.43	7.47	7.49		
Chronic constipation	Distal	f (39)	6.61	7.83	7.77	7.03	

Antagonist concentration is 0.1 μM unless otherwise indicated: ^a CGP 20712A 10 nm, ^b CGP 20712A 30 nm, ^c CGP 20712A 300 nm. Ca: cancer; N/A: information not available.

Figure 1 Mean (−)-isoprenaline concentration-relaxation response curves of carbachol-precontracted, human colonic longitudinal smooth muscle strips. Each graph shows (−)-isoprenaline concentration-response curves in the absence (●) and presence (○) of a β-adrenoceptor antagonist. In (a) the β-adrenoceptor antagonist propranolol (0.1 μM), (b) the selective $β_1$ -adrenoceptor antagonist CGP 20712A (0.1 μM) and (c) the selective $β_2$ -adrenoceptor antagonist ICI 118551 (0.1 μM). Points show mean and vertical lines indicate s.e.mean (n = 5−6).

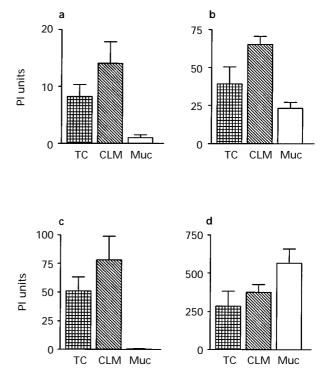

Figure 2 Mean (—)-isoprenaline concentration-relaxation response curves of carbachol-precontracted, human colonic taenia coli muscle strips. Each graph shows (—)-isoprenaline concentration-response curves in the absence (\bullet) and presence (\bigcirc) of a β -adrenoceptor antagonist. In (a) the β -adrenoceptor antagonist propranolol (0.1 μ M), (b) selective β_1 -adrenoceptor antagonist, CGP 20712A (0.1 μ M) and (c) the selective β_2 -adrenoceptor antagonist ICI 118551 (0.1 μ M). Points show mean and vertical lines indicate s.e.mean (n=3-4).

Figure 3 β-Adrenoceptor and adipsin mRNA in human tissues. RT-PCR was done on RNA from single samples of human fat and colon taenia coli (TC), circular/longitudinal smooth muscle (CLM), and mucosa (Muc), or a negative control (Neg) containing no RNA, with unlabelled primers. Following electrophoresis and transfer to nylon membranes, the PCR products were hybridized with 33 P-labelled independent probes (Table 1). Sizes of the products were checked on the ethidium bromide-stained gels by comparison with 100 bp DNA ladder (Pharmacia). The blots were exposed to phosphorimager plates for varying times before being scanned: 34 h for β_1 -adrenoceptor and adipsin, 5 h for β_2 - and 17 h for β_3 -adrenoceptor mRNA.

human right ventricular free wall. The identity of the β -adrenoceptor and adipsin products was confirmed by hybridization of unlabelled PCR products with independent oligonucleotide probes (Figure 3). To ensure that the PCR products were derived exclusively from mRNA and not contaminating genomic DNA, we treated all total RNA samples with DNase. In addition, we used intron-spanning primers to detect β_3 -adrenoceptor and adipsin mRNA. The observed product sizes were found to correspond to the expected 368 and 512 bp, whereas any contaminating DNA containing introns would have given PCR products of 1393 bp (β_3 -adrenoceptor) and 921 bp (adipsin). We did not observe these larger bands in any samples of cDNA used for the subsequent measurement of β -adrenoceptor or adipsin mRNA.

We used semi-quantitative RT-PCR to determine the relative levels of β -adrenoceptors and transferrin receptor mRNA in 5 samples of each colon region (Figure 4). For each type of mRNA all samples were processed within a single PCR experiment, ensuring valid comparison between tissues. However, we could not make any direct comparisons between the β adrenoceptor subtype mRNAs, since they were found to amplify with differing efficiencies. In particular, β_1 -adrenoceptors amplified at low efficiency as found by other groups (Krief et al., 1993; Rodriguez et al., 1995). The mRNAs for all three β subtypes were present at relatively high levels in circular/ longitudinal smooth muscle and in taenia coli, whereas mucosa contained moderate levels of β_2 -adrenoceptor, very low levels of β_1 -adrenoceptor and undetectable amounts of β_3 -adrenoceptor mRNA. Low levels of \(\beta\)-adrenoceptor mRNA in mucosal samples were not due to low amounts of input RNA, as the level of transferrin receptor mRNA was higher in mucosa than in the other regions. To ensure that the β_3 -adrenoceptor mRNA detected in smooth muscle was not due to contaminating fat, we compared levels of adipsin mRNA (Evans et al., 1996) in all colon samples with that in human WAT (100%). The mean values were $5.4 \pm 2.2\%$ in taenia coli,

Figure 4 Relative levels of β-adrenoceptor (a) $β_1$, (b) $β_2$ and (c) $β_3$ and (d) transferrin receptor mRNA in regions of human colon: taenia coli (TC), circular/longitudinal smooth muscle (CLM), and mucosa (Muc). All PCR experiments were carried out on a single set of reverse transcription reactions. In addition, the PCR with each set of primers was done in a single run, ensuring valid comparison between tissues. Differences both in levels of expression of the different mRNAs and in their efficiency of amplification are reflected by variations in the y-axes. Numbers refer to arbitrary phosphorimager (PI) units ($\times 10^{-4}$) obtained from the 'volume report' function of ImageQuaNT software (Molecular Dynamics). Columns show the mean \pm s.e.mean (n = 5).

 $11.3\pm5.6\%$ in circular/longitudinal smooth muscle, and $4.1\pm1.4\%$ in mucosa. When we analysed all 15 colon samples individually, there was no correlation between levels of β_3 -adrenoceptor and adipsin mRNA. Low levels of adipsin mRNA and the lack of correlation with β_3 -adrenoceptor mRNA indicate that the presence of the β_3 -adrenoceptor mRNA in taenia coli and circular/longitudinal smooth muscle is not due to fat. Interestingly, the sample of human WAT showed substantial levels of β_1 - and β_2 -adrenoceptor mRNA, but undetectable β_3 - mRNA, reflecting the variable expression of β_3 -adrenoceptor mRNA between different fat deposits in man (Krief *et al.*, 1993).

Discussion

 β -Adrenoceptor stimulation in a range of human gastrointestinal smooth muscle preparations consistently produces a relaxation response. The order of potency of a range of agonists in ileum, colon and rectum suggests differences in the β adrenoceptors in longitudinal compared to circular smooth muscle (Hedges & Turner, 1969). The present studies of longitudinal muscle strips from human colon showed the high affinity of (-)-propranolol in shifting the (-)-isoprenaline C-R curves, suggesting that the receptor mediating this relaxation is a typical β -adrenoceptor. The high affinity of CGP 20712A and the relative lack of effect by ICI 118551 indicate that the β_1 -adrenoceptor is the predominant subtype involved in the (-)-isoprenaline stimulated relaxation of human longitudinal smooth muscle. In addition, higher levels of β_1 -adrenoceptor mRNA were detected in the circular/longitudinal muscle preparations compared to taenia coli and mucosa.

These findings are consistent with studies by Lyrenas (1985), who concluded that β_1 -adrenoceptors are physiologically important in the motility of smooth muscle based on the increased colonic motility and pressure observed in man *in vivo* after administration of a selective β_1 -antagonist. However, in contrast to the studies by Lyrenas (1985), the present study did not show the additional involvement of β_2 -adrenoceptors.

Although the functional studies of McLaughlin et al. (1991) showed little evidence for a subtype other than β_1 in circular smooth muscle preparations, more recent studies have provided evidence, with the selective β_3 -antagonist, SR 59230A, for the presence of β_3 - as well as β_1 and/or β_2 -adrenoceptors in human circular muscle (De Ponti et al., 1996). This is consistent with the detection of high levels of β_1 -, β_2 - and β_3 adrenoceptor mRNA in the combined longitudinal/circular preparations in the present study. Unfortunately, we were unable to separate the circular and longitudinal muscle layers and the molecular evidence is provided for a mixed muscle coat. The circular smooth muscle makes up the bulk of these mixed muscle preparations and it is possible that responses of muscle strips cut in the longitudinal orientation could involve the circular muscle coat. However, our longitudinal muscle responses showed no evidence of β_3 -adrenoceptor involvement in comparison to studies performed on circular smooth muscle by De Ponti *et al.* (1996). In addition, any possible β_3 -adrenoceptor synthesized in the longitudinal muscle does not appear to contribute to the isoprenaline-induced relaxation of the longitudinal preparations.

The present study of human taenia coli revealed a more complex response as the affinities of (-)-propranolol, ICI 118551, and CGP 20712A were all somewhat lower than expected for β_1 - and β_2 -adrenoceptors but still higher than values considered appropriate for the atypical β -adrenoceptor. These results indicate that there is a heterogeneous population of β receptors in human taenia coli. The lower than expected affinity of (-)-propranolol may indicate that an atypical β adrenoceptor population is present. A mixed population of subtypes was consistent with the presence of mRNA for all three β -adrenoceptors in taenia coli. The lack of activity by BRL 37344 in the taenia coli preparations was consistent with the findings of others studying human colon relaxation (McLaughlin et al., 1991; De Ponti et al., 1996; J Kelly, personal communication) and supported previous observations that BRL 37344 is a poor partial agonist at the human β_3 adrenoceptor. In comparison, the β_1 - $/\beta_2$ -antagonist and β_3 agonist, CGP 12177 has been shown to relax both human colonic circular smooth muscle (De Ponti et al., 1996) and human taenia coli (J Kelly, personal communication). Studies of the human adipocyte β_3 -adrenoceptor have also shown that CGP 12177 is a more effective agonist than BRL 37344 (Lonnqvist et al., 1993).

Additional factors that must also be considered in studies with human tissues are the various medications taken by the patients for gastrointestinal or other unrelated conditions and the level of severity of these conditions. Although colon specimens were taken from macroscopically normal regions of the tissue, patient medication and history were not available and other underlying variations between the samples could be present. Chronic treatment with β -antagonists has been shown to enhance β -adrenoceptor-mediated responses without altering β -adrenoceptor density in rat heart (Tan & Summers, 1995). However, the sensitivity to isoprenaline of the various muscle preparations used in this study did not appear to vary noticeably between different patients (see Table 2).

Abnormalities of colonic motility are believed to play a major role in many alimentary disorders but suitable treatment has not evolved due in part to a lack of understanding of the complex interactions between extrinsic and intrinsic nerves, endocrine and paracrine factors and other biologically active molecules present in the human colon (Camilleri & Ford, 1994). Sympathetic nerves reach all regions of the human gastrointestinal tract and nerve stimulation causes relaxation of human ileum and of both ascending and sigmoid colon

(Bennett & Stockley, 1975). Little is known about the physiological role of β -adrenoceptors in the human gastro-intestinal tract but it has been suggested that β_1 -receptors are located within ganglionic plexuses while β_2 -receptors are on smooth muscle cells (Ek *et al.*, 1986). β -Adrenoceptor stimulation is known to relax smooth muscle, and sympathetic hyperactivity and increased circulating catecholamines during surgery inhibit gastrointestinal motility in the stomach and colon. The precise mechanism of this condition (postoperative ileus) is unknown. However, β -adrenoceptor stimulation is thought to play a role, as treatment with the non-selective β -antagonist propranolol shortens but does not obliterate the period of postoperative ileus in patients after colonic surgery (Glise & Hallerback, 1983).

There are also indications that the colonic motility dysfunction of irritable bowel syndrome may be due in part to a decrease in sympathetically mediated β -adrenergic activity (Lyrenas et al., 1985) and non-selective β -adrenoceptor blockade enhances sigmoid colon motility and aggravates these symptoms (Abrahamsson et al., 1983). Knowledge of the β adrenoceptor subtypes activated by sympathetic nerves in human colon could also be beneficial for the autonomic neuropathy of Crohn's disease which has been determined as predominantly a sympathetic dysfunction (Lindgren et al., 1991). An absent postprandial colonic response in diabetic patients also appears to be related to an autonomic neuropathy and the smooth muscle appears to remain normally responsive to direct stimulation (Battle et al., 1980). The therapeutic benefits of β_3 -adrenoceptor agonists to improve glucose tolerance in diabetic patients (Cawthorne et al., 1992) may need to be considered in view of the additional effects these compounds may have on human gastrointestinal smooth muscle.

 β -Adrenoceptors are known to influence gastrointestinal peptides and secretions and the present study found moderate levels of β_2 - and lower levels of β_1 -adrenoceptor mRNA in human mucosa compared with their respective levels in circular/longitudinal smooth muscle preparations. Isoprenaline has been shown to induce gastrin secretion in man (Bransborg et al., 1976) and human intestinal mucosal absorption of electrolytes such as sodium, chloride and water is also increased by intravenous administration of isoprenaline (Morris & Turnberg, 1981). Propranolol reduced these effects suggesting the involvement of β -adrenoceptors but the subtypes involved were not investigated. Several studies performed to examine gastrointestinal secretory processes have considered the potential involvement of the atypical β -adrenoceptor. Gastric acid secretion in the rat stomach (Canfield & Paraskeva, 1992) and bicarbonate secretion in rat caecum (Canfield & Abdul-Ghaffar, 1992) are stimulated by the β_3 -agonists, SR 58611A and BRL 37344. In addition, the β_3 -agonists BRL 37344 and CL 316243 have recently been shown to be potent inhibitors of indomethacin-induced gastric ulceration (Bahl et al., 1996). Daly (1984) proposed that β -adrenoceptor involvement in gastrin release and gastric acid secretion may only be important under conditions of severe stress. This favours the argument for a mucosal β_3 -adrenoceptor as the β_3 -subtype has been shown to be less susceptible to desensitization and downregulation during periods of increased sympathetic drive when high circulating catecholamine levels cause rapid desensitization of β_1 - and β_2 -receptors (Granneman, 1992).

Although the detection of β_3 -adrenoceptor mRNA has previously been demonstrated in mucosal samples from rat colon (Evans *et al.*, 1996), the present study shows moderate levels of both β_1 - and β_2 -adrenoceptor mRNA but a lack of β_3 -adrenoceptor mRNA in human colonic mucosa. However, previous (-)-[¹²⁵I]-cyanopindolol binding studies in human colon homogenates revealed an atypical β -adrenoceptor binding site and autoradiographic studies showed high levels of propranolol-resistant 'atypical' β -adrenoceptor in the mucosal layer of the human colon. The regional distribution of the propranolol-resistant binding site was similar to the distribution of binding of a β_3 -adrenoceptor riboprobe demonstrated by *in situ* hybridization (Summers *et al.*, 1995). The

absence of β_3 -adrenoceptor mRNA in human samples may be explained by species variation of β_3 -receptor distribution between rodents and man, but the conflicting evidence for a mucosal β_3 -adrenoceptor from binding, functional and molecular studies may be resolved if further novel subtypes of the atypical β -adrenoceptor are identified. Speculation on possible clinical advantages of β_3 -adrenoceptor agonists on human mucosal function should be made with caution at this stage.

We thank Prof. P. Bhathal and colleagues at the Royal Melbourne Hospital for the supply of human colon, also Dr I. Coupar and Peter McLean from the Victorian Pharmacy College. This work was supported by grants from the National Health and Medical Research Council and National Heart Foundation of Australia.

References

- ABRAHAMSSON, H., LYRENAS, E. & DOTEVALL, G. (1983). Effects of beta adrenoceptor blocking drugs on human sigmoid colonic motility. *Dig. Dis. Sci.*, **28**, 590–594.
- BAHL, A.K., CLAYTON, N.M., COATES, J., MARTIN, D.P., OAKLEY, I.G., STRONG, P. & TREVETHICK, M.A. (1996). Comparison of the profiles of agonists as stimulants of the β_3 -adrenoceptor *in vitro* with their gastroprotective effects in the conscious rat. *Br. J. Pharmacol.*, **117**, 580 586.
- BATTLE, W.M., SNAPE, W.J., ALAVI, A., COHEN, S. & BRAUNSTEIN, S. (1980). Colonic dysfunction in diabetes mellitus. *Gastroenter-ology*, **79**, 1217–1221.
- BENNETT, A. (1965). A pharmacological investigation of human isolated ileum. *Nature*, **208**, 1289–1291.
- BENNETT, A. & STOCKLEY, H.L. (1975). The intrinsic innervation of the human alimentary tract and its relation to function. *Gut*, **16**, 443-453.
- BERKOWITZ, D.E., NARDONE, N.A., SMILEY, R.M., PRICE, D.T., KREUTTER, D.K., FREMEAU, R.T. & SCHWINN, D.A. (1995). Distribution of β_3 -adrenoceptor mRNA in human tissues. *Eur. J. Pharmacol.*, **289**, 223–228.
- BRANDSBORG, O., BRANDSBORG, M. & CHRISTENSEN, N.J. (1976). The role of beta-adrenergic receptor in the secretion of gastrin: Studies in normal subjects and in patients with duodenal ulcers. *Eur. J. Clin. Invest.*, **6**, 395–401.
- BUCKNELL, A. & WHITNEY, B. (1964). A preliminary investigation of the pharmacology of the human isolated taenia coli preparation. *Br. J. Pharmacol.*, **23**, 164–175.
- CAMILLERI, M. & FORD, M.J. (1994). Functional gastrointestinal disease and the autonomic nervous system: A way ahead? *Gastroenterology*, **106**, 1114–1117.
- CANFIELD, P. & ABDUL-GHAFFAR, T. (1992). Stimulation of bicarbonate secretion by atypical β-receptor agonists in rat cecum *in vitro*. *Eur. J. Pharmacol.*, **216**, 293–297.
- CANFIELD, P. & PARASKEVA, P. (1992). β-Adrenoceptor agonist stimulation of acid secretion by rat stomach *in vitro* is mediated by 'atypical' β-adrenoceptors. *Br. J. Pharmacol.*, **106**, 583–586.
- CAWTHORNE, M.A., SENNITT, M.V., ARCH, J.R.S. & SMITH, S.A. (1992). BRL 35135, a potent and selective atypical β-adrenoceptor agonist. *Am. J. Clin. Nutr.*, **55**, 2528–2578.
- CHOMCZYNSKI, P. & SACCHI, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal. Biochem.*, 162, 156–159.
- DALY, M.J. (1984). The classification of adrenoceptors and their effects on gastric acid secretion. *Scand. J. Gastroenterol.*, **19**, 3–10.
- DE PONTI, F., GIBELLI, G., CROCI, T., ARCIDIACO, M., CREMA, F. & MANARA, L. (1996). Functional evidence of atypical β_3 -adrenoceptors in the human colon using the β_3 -selective adrenoceptor antagonist SR 59230A. *Br. J. Pharmacol.*, **117**, 1374–1376.
- EK, B.A., BJELLIN, L.A.C. & LUNDGREN, B.T. (1986). Betaadrenergic control of motility in the rat colon. I. Evidence for functional separation of the beta1- and beta2-adrenoceptor mediated inhibition of colon activity. *Gastroenterology*, **90**, 400-407.
- EMORINE, L.J., MARULLO, S., BRIEND-SUTTREN, M.-M., PATEY, G., TATE, K., DELAVIER-KLUTCHKO, C. & STROSBERG, A.D. (1989). Molecular characterisation of the human β_3 -adrenergic receptor. *Science*, **245**, 1118–1121.
- EVANS, B.A., PAPAIOANNOU, M., BONAZZI, V.R. & SUMMERS, R.J. (1996). Expression of β_3 -adrenoceptors in rat tissues. *Br. J. Pharmacol.*, **117**, 210–216.
- FISHLOCK, D.J. & PARKS, A.G. (1963). A study of human colonic muscle in vitro. Br. Med. J., 2, 666-667.

- FURCHGOTT, R.F. (1972). The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. In *Handbook of Experiment Pharmacology*, pp. 283-335. Berlin: Springer Verlag.
- GLISE, H. & HALLERBACK, B. (1983). The effect of propranolol on postoperative ileus after colonic surgery. *Gastroenterology*, **84**, 1169
- GRANNEMAN, J.G. (1992). Effects of agonist exposure on the coupling of beta₁ and beta₂ adrenergic receptors to adenylyl cyclase in isolated adipocytes. *J. Pharmacol. Exp. Ther.*, **261**, 638–642.
- GRANNEMAN, J.G. & LAHNERS, K.N. (1994). Analysis of human and rodent β_3 -adrenergic receptor messenger ribonucleic acids. *Endocrinology*, **135**, 1025–1031.
- GRANNEMAN, J.G., LAHNERS, K. & CHAUDRY, A. (1993). Characterisation of the human β_3 -adrenergic receptor gene. *Mol. Pharmacol.*, **44**, 264–270.
- HEDGES, A. & TURNER, P. (1969). Beta-receptors in human isolated smooth muscle. *Br. J. Pharmacol.*, **37**, 547 548.
- KRIEF, S., LONNQVIST, F., RAIMBAULT, S., BAUDE, B., VAN SPRONSEN, A., ARNER, P., STROSBERG, A.D., RICQUIER, D. & EMORINE, L.J. (1993). Tissue distribution of β_3 -adrenergic receptor mRNA in man. *J. Clin. Invest.*, **91**, 344–349.
- LIGGETT, S.B. (1992). Functional properties of the rat and human β_3 -adrenergic receptors, differential agonist activation of recombinant receptors in chinese hamster ovary cells. *Mol. Pharmacol.*, **42.** 634–637.
- LINDGREN, S., LILJA, B., ROSEN, I. & SUNDKVIST, G. (1991). Disturbed autonomic nerve function in patients with Crohn's disease. *Scand. J. Gastroenterol.*, **26**, 361–366.
- LONNQVIST, F., KRIEF, S., STROSBERG, A.D., NYBERG, B., EMORINE, L.J. & ARNER, P. (1993). Evidence for a functional β_3 -adrenoceptor in man. *Br. J. Pharmacol.*, **110**, 929–936.
- LYRENAS, S. (1985). Beta adrenergic influence on esophageal and colonic motility in man. *Scand. J. Gastroenterol.*, **116**, 1–48.
- LYRENAS, E., ABRAHAMSSON, H. & DOETVALL, G. (1985). Rectosigmoid motility response to beta-adrenoceptor stimulation in patients with the irritable bowel syndrome. Scand. J. Gastroenterol., 20, 1163-1168.
- MANARA, L., CROCI, T. & LANDI, M. (1995). Beta (3)-adrenoceptors and intestinal motility. Fund. Clin. Pharmacol., 9, 332-342.
- McLAUGHLIN, D.P., FULTON, J.D., MACDONALD, A., MACDONALD, E. & SCOTT, P.J.W. (1988). Effects of catecholamines on human colonic circular smooth muscle. *Br. J. Pharmacol.*, **95**, 542P.
- MCLAUGHLIN, D.P., FULTON, J.D., MACDONALD, E., SCOTT, P.J.W. & MACDONALD, A. (1991). β-Adrenoceptors mediating relaxation in human colon *in vitro*. *Br. J. Pharmacol.*, **104**, 152P.
- MORRIS, A.I. & TURNBERG, L.A. (1981). Influence of isoproterenol and propranolol on human intestinal transport *in vivo*. *Gastroenterology*, **81**, 1076–1079.
- RODRIGUEZ, M., CARILLON, C., COQUEREL, A., LE FUR, G., FERRARA, P., CAPUT, D. & SHIRE, D. (1995). Evidence for the presence of β_3 -adrenergic receptor mRNA in the human brain. *Mol. Brain Res.*, **29**, 369–375.
- SUMMERS, R.J., RUSSELL, F.D., ROBERTS, S.J., BONAZZI, V.R., SHARKEY, A., EVANS, B.A. & MOLENAAR, P. (1995). Localisation and characterisation of atypical β -adrenoceptors in skeletal muscle and gut. *Pharmacol. Comm.*, **6**, 237–252.
- SUMMERS, R.J., ROBERTS, S.J., PAPAIONNAU, M. & EVANS, B.A. (1996). Functional and molecular evidence for β_3 -adrenoceptors in human and rat gastrointestinal tissues. *Br. J. Pharmacol.*, **117**, 60P.

TAN, Y.Y. & SUMMERS, R.J. (1995). β-Adrenoceptor regulation in rat heart, lung and skin after chronic treatment with (-)-tertatolol or (-)-propranolol. J. Auton. Pharmacol., 15, 421–436

WHITNEY, B. (1965). A preliminary investigation of the pharmacology of longitudinal muscle strips from human isolated jejunum. *J. Pharm. Pharmacol.*, **17**, 465–473.

(Received September 20, 1996 Revised January 6, 1997 Accepted January 9, 1997)